湖南公務(wù)員數(shù)學(xué)運算習(xí)題精解(43)
【例題】在前面3場擊球游戲中,某人的得分分別為130、143、144。為使4場游戲得分的平均數(shù)為145,第四場他應(yīng)得多少分?( )
【例題】某單位圍墻外面的公路圍成了邊長為300米的正方形,甲乙兩人分別從兩個對角沿逆時針同時出發(fā),如果甲每分鐘走90米,乙每分鐘走70米,那么經(jīng)過( )甲才能看到乙
A.16分40秒 B.16分 C.15分 D.14分40秒
【例題】一種商品,甲店進貨價比乙店便宜12%,兩店同樣按20%的利潤定價,這樣1件商品乙店比甲店多收入24元,甲店的定價是多少元?( )
A.1000 B.1024 C.1056 D.1200
【例題】某單位有60名運動員參加運動會開幕式,他們著裝白色或黑色上衣,黑色或藍色褲子。其中有12人穿白上衣藍褲子,有34人穿黑褲子,29人穿黑上衣,那么穿黑上衣黑褲子的有多少人?
A.12 B.14 C.15 D.19
湖南公務(wù)員網(wǎng)(http://www.hunangwy.org)解析
【解析】C。4場游戲得分平均數(shù)為145,則總分為145×4=580,故第四場應(yīng)的580-130-143-144=163分。
【解析】A。這道題是一道較難的行程問題,其難點在于“甲看到乙”這個條件。有一種錯誤的理解就是“甲看到乙”則是甲與乙在同一邊上的時候甲就能看到乙,也就是甲、乙之間的距離小于300米時候甲就能看到乙了,其實不然?紤]一種特殊情況,就是甲、乙都來到了這個正方形的某個角旁邊,但是不在同一條邊上,這個時候雖然甲、乙之間距離很短,但是這時候甲還是不能看到乙。由此看出這道題的難度——甲看到乙的時候兩人之間的距離是無法確定的。
有兩種方法來“避開”這個難點——
解法一:借助一張圖來求解
雖然甲、乙兩人沿正方形路線行走,但是行進過程完全可以等效的視為兩人沿著直線行走,甲、乙的初始狀態(tài)如圖所示。
圖中的每一個“格檔”長為300米,如此可以將題目化為這樣的問題“經(jīng)過多長時間,甲、乙能走入同一格檔?”
觀察題目選項,發(fā)現(xiàn)有15分鐘、16分鐘兩個整數(shù)時間,比較方便計算。因此代入15分鐘值試探一下經(jīng)過15分鐘甲、乙的位置關(guān)系。經(jīng)過15分鐘之后,甲、乙分別前進了
90×15=1350米=(4×300+150)米
70×15=1050米=(3×300+150)米
也就是說,甲向前行進了4個半格檔,乙向前行進了3個半格檔,此時兩人所在的地點如圖所示。
甲、乙兩人恰好分別在兩個相鄰的格檔的中點處。這時甲、乙兩人相距300米,但是很明顯甲還看不到乙,正如解析開始處所說,如果單純的認為甲、乙距離差為300米時,甲就能看到乙的話就會出錯。
考慮由于甲行走的比乙快,因此當(dāng)甲再行走150米,來到拐彎處的時候,乙行走的路程還不到150米。此時甲只要拐過彎就能看到乙。因此再過150/90=1分40秒之后,甲恰好拐過彎看到乙。所以甲從出發(fā)到看到乙,總共需要16分40秒,甲就能看到乙。
這種解法不是常規(guī)解法,數(shù)學(xué)基礎(chǔ)較為薄弱的考生可能很難想到。
解法二:考慮實際情況
由于甲追乙,而且甲的速度比乙快,因此實際情況下,甲能夠看到乙恰好是當(dāng)甲經(jīng)過了正方形的一個頂點之后就能看到乙了。也就是說甲從一個頂點出發(fā),在到某個頂點時,甲就能看到乙了。
題目要求的是甲運動的時間,根據(jù)上面的分析可知,經(jīng)過這段時間之后,甲正好走了整數(shù)個正方形的邊長,轉(zhuǎn)化成數(shù)學(xué)運算式就是
90×t=300×n
其中,t是甲運動的時間,n是一個整數(shù)。帶入題目四個選項,經(jīng)過檢驗可知,只有A選項16分40秒過后,甲運動的距離為
90×(16×60+40)/60=1500=300×5
符合“甲正好走了整數(shù)個正方形的邊長”這個要求,它是正確答案。
【解析】C。設(shè)乙店進貨價為x元,可列方程20%x-20%×(1-12%)x=24,解得x=1000,故甲店定價為1000×(1-12%)×(1+20%)=1056元。
【解析】C。有34人穿黑褲子,則有60-34=26個人穿藍色褲子,26-12=14個人穿黑衣藍褲,則有29-14=15個人穿黑衣黑褲。
